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INTRODUCTION

The development of directionally solidified and single crystal alloys is perhaps
the most important recent advancement in hot section materials technology. By reduc-
ing or eliminating grain boundaries in superalloys, the high temperature strengths
have been substantially improved. Metallurgists have developed the alloy chemistries
and casting processes so that they are now in practical use. However, the life lim-
its of gas turbine parts, under complex loading conditions, are still not well known
or understood. The objective of this program is to develop that knowledge to enable

the designer to improve anisotropic gas turbine parts to their full potential.

Program Overview

The base program, which is followed by two options (fig. I), will concentrate on
coated turbine blade airfoil conditions. The coating, which is added to turbine air-
foils to improve their oxidation and corrosion life, plays a major role in fatigue
initiation. For this reason coated specimens are used extensively in this program.
The materials have been selected, specimen fabrication is underway, the literature
search is completed and Task III testing has begun. Table I shows the task breakdown
of the base program.

Material Selection

The two single crystal alloys selected are PWA 1480 and Alloy 185. Table II
lists the composition of these alloys. PWA 1480 was selected because it is the sin-
gle crystal alloy most widely used today in gas turbine engines. Furthermore, it is
representative of other practical single crystal alloys. Alloy 185 was selected be-
cause of differences between it and PWA 1480. These differences include a high vol-

ume fraction of T' due to the higher aluminum content, a large 7/_' misfit due to
the high molybdenum content, and a higher level of creep anisotropy at higher tem-
peratures. Contrast between the two alloys will provide a good test of the general-
ity of any life prediction and constitutive models developed in this program.

The coatings selected are an overlay coating, PWA 286, and an aluminide diffu-
sion coating, PWA 273. Coating chemistries are listed in Table III. These widely
used coatings represent two basic classes.

Test Specimens

The constitutive specimens are solid and cylindrical; the fatigue specimens are
hollow and cylindrical. The latter geometry is particularly applicable to thermo-
mechanical fatigue (TMF) specimens. The thin wall facilitates thermal transient re-
sponses at reasonably fast rates. In addition, compressive stresses can be achieved
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with minimum risk of buckling. The crystallographic orientation of the specimens for

both the constitutive and life prediction program will include<lO0>, <llO>, <Ill>,

and<123>. Under tensile loading, the first two orientations produce slip along the

orthogonal planes; the third along cuboidal planes, and the forth a mixture of the
two.

Test specimens for the coatings' tensile, constitutive, and life properties re-
quired special preparation. The plasma-sprayed specimens were fabricated by two
methods; some were machined from HIPed bulk powder. The others were sprayed with a
1.5 mm (0.060 in.) layer of coating on a metal substrate which was subsequently re-
moved by machining. On turbine blades the plasma-sprayed coating is about 0.4 mm
(0.015 in.) thick and finished with shot peen. Metallographically the two specimens
bracket the actual porosity of airfoil coating (see fig. 2).

Diffusion coating properties are impossible to measure directly. The strategy in
this program will be to utilize two thicknesses of substrate. Specimens of both
thicknesses will be coated and then tested for tensile, creep and fatigue proper-
ties. The results will then be plotted versus substrate thickness and extrapolated
to zero thickness to obtain the values for the coating alone.

Models to be Evaluated

An extensive literature search has been completed for both the constitutive and
life prediction models. The bulk of the past work has been done on isotropic materi-
als. This research will be adapted to anisotropic materials whenever possible. For
example, the life prediction models may use maximum resolved shear strain ranges on
the active slip planes in place of principle strain ranges. The constitutive models
to be considered will include macroscopic continuum theories of Hill (ref. I), and
Lee and Zaverl (ref. 2 and 3), or a unified visco-plastic formulation such as that
of Walker and Cassenti (ref. 4 and 5). The unified theory is currently being extend-
ed by Walker to recognize specific slip systems of nickel-based single crystal al-
loys. Stouffer, in a parallel program (ref. 6), is also developing a constitutive
model for single crystal alloys. All of these models will be evaluated utilizing the
test data generated in this program.

Life prediction models under consideration include a number of isotropic models:
linear time-cycle fraction (ref. 7), ductility exhaustion (ref. 8 and 9), frequency
modified life (ref. I0, II and 12), frequency separation (ref. 13 and 14),
Ostergren's method (ref. 15), strain range partitioning (ref. 16), damage mechanics,
(ref. 17 and 18), continuous damage (ref. 19 and 20), and cumulative damage approach
(ref 21). All of these models will be evaluated utilizing resolved shear stress and/
or strain on active slip planes. A model to study the interaction of the coating and
substrate is being developed.

Test Results

Because the test program is in its early stages evaluation of the results would
be premature. One interesting preliminary result, however, is a comparison of the
fracture surfaces of tensile specimens of PWA 1480 pulled in the<O01> direction
shown in figure 3. Note that the faceting at 760°C (1400°F) is pronounced and that
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the number of active slip planes is small. However, as the test temperature is in-
creased to I093°C (2000°F), the number of faceting planes becomesmore numerous and
the fracture surface appears more normal to the tensile load.

Plans

By October 1985, we plan to complete the Task III tests and to have a prelimin-
ary evaluation of the constitutive and life prediction models.
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TABLE I

BASE PROGRAMTASKS

I Material/Coating Selection and Acquisition

II Selection of Candidate Life Prediction
and Constitutive Models

III Level 1 Experiments

IV Correlation of Models With Level 1 Single
Crystal Experiments

V Level 2 Single Crystal Experiments

VI Final Selection of Life Prediction and Con-
stitutive Models

VII Subcomponent Verification For Primary Sin-
gle Crystal Material

VIII Alternate Single Crystal Material Charac-
terization For Airfoil Applications

IX Model Verification On Alternate Single
Crystal Material

X Delivery of Computer Code to NASA

TABLE II

SINGLE CRYSTAL ALLOY COMPOSITION

(Weight Percent)

Allo i Ni Cr Co Ti A1 Ta W Mo

PWA 1480 Bal* I0.0 5.0 1.5 5.0 12.0 4.0 --

Alloy 185 Bal

Nb C

...... 6.8 -- 6.0 14.0 -- 0.04

B Zr Hf Y

* Balance
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TABLE II I

COATING MATERIALS

Composi ti on

Ni CoCrAI Y
+ Si +Hf

A1umi ni de/
Outward 0iffusion

ORIGINAL PAGE Ig

OF POOR QUALITY

Deposition Process

Vacuum Plasma

Spray

Gas Phase

PROGRAM OUTLINE

1984 1985 !198,1 1987i

BASE

COATED AIRFOIL CONDITIONS

TWO SINGLE CRYSTAL ALLOYS

PWA 1480 & ALLOY 185

TWO COATINGS

OVERLAY (PWA 286)

DIFFUSION (PWA 273)

OPTION 1

BLADE ROOT CONDITIONS

TWO SINGLE CRYSTAL ALLOYS

SAME AS ABOVE

COATINGS

NONE

OPTION 2

AIRFOIL & ROOT CONDITIONS

)NE DSR MATERIAL

(DIRECTIONALLY SOLIDIFIED

OR RECRYSTALLIZED)

)NE COATING

Figure 1
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PWA 786 OVERLAY COATING STRUCTURE : STANC-ALONE vs PRODUCTION 

ORIGINAL 
OF POOR 

TYPICAL PRODUCTION COATING 
F E A T  TREATED 8 PEENFD 

PAGE IS 
QUALITY 

H I P e d  BULK POWDER 5OOX T H I C K  PLASMA SPRAY 5@@X 
HEAT TPEATFD i3 PEENED 

Figure 2 
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ORIGINAL PAGE B 
Of POOR QUALITY 

FRACTURE SURFACE OF PWA 1480 TENSILE SPECIMENS 

76OOC (14OOOF) 

982 OC (1 800 OF) 

871 OC (1 6OOOF) 

1093OC (2000OF) 

F i  gure 3 
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